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Abstract. We present results relative to a simple cellular automata model without periodic boundary
conditions for an highway with on-ramps. Simulations performed with this model reproduce experimental
phenomena observed in traffic such as free flow, synchronized flow, congested flow, lane inversion, forward
and backward propagating waves. On-ramps play the important role of nucleation points for the dynamic
features of traffic.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamic systems – 45.70.Vn Granular models
of complex systems; traffic flow – 89.40.+k Transportation

1 Introduction

A cellular automaton consists of a regular lattice with a
discrete variable at each site. A set of rules specify the
time and space evolution of the system, which is discrete
in both variables [1]. These systems have attracted much
interest in very recent years because even with simple rules
cellular automata may show very complex evolution pat-
terns. These rules are usually, but not necessarily, limited
to first neighbours interactions: that is, the state of a cell
is completely determined by its nearest neighbours cells.
The so-called game of life [2] is probably the simplest and
best known example of cellular automaton which exhibits
the potentiality of these systems. It is now recognized that
repeated applications of simple rules can lead to very com-
plex behaviours that can emulate physical, social and bi-
ological systems [3].

A recent application of cellular automata is car traffic
simulation [4–7], which is a problem of great economical
and social relevance. As physicists, we found particularly
interesting to observe and try to understand how the com-
plex features of traffic can emerge from a simple set of
fundamental laws. One possible approach is to look for
a dynamic model in terms of differential equations [8,9].
These models were able to discover that at high car den-
sities traffic becomes unstable and free flow of cars turns
into jams. These non linear equations also exhibit chaotic
structures.
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A different starting point is that of cellular automata.
This method, that is simpler to implement on computers,
provides a simple physical picture of the system and
can be easily modified to deal with different aspects of
traffic [10,11]. For these reasons, traffic cellular automata
models are getting more and more popular.

Many results published up to now refer to cellular au-
tomata models with periodic boundary conditions. That
is, the road has neither beginning nor end, and cars exit-
ing the road at one end re-enter it at the other one. The
use of periodic boundary conditions is a well known tech-
nique in physics to avoid mathematical complications. It
is a clever approximation whenever the influence of the
boundaries on the system is negligible, but, in the case of
traffic, there are important effects influencing the dynamic
of cars due to boundary conditions. The situation may re-
semble that of the liquid-vapor phase transition of water.
Above the transition temperature a density fluctuation in
the liquid could nucleate a bubble of the new phase and
the transition could start. But, since the liquid is held in
some container, in an actual experience the nucleation of
the new phase invariably occurs at the container imper-
fections. The same is for traffic jams. They form whenever
car density exceeds a certain value, but are nucleated by
imperfections of the road.

It is common knowledge that there are frequently long
queues at the off and on-ramps of an highway and exper-
imental data [12] confirm that traffic jams propagating
backward in space originate near intersections with other
highways. Therefore we developed a cellular automata
model for a two lane highway leaving periodic boundaries
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conditions in favor of a road with a beginning, an end
and a certain number of on-ramps1. In our opinion such
a non-periodic model represents an improvement with re-
spect to periodic models in the following respects: 1) it
is easier to implement in a computer program: cars are
created at the desired rate by the use of a random num-
ber generator and there are no complications due to cars
re-entering the road or car number conservation; 2) in or-
der to study traffic effects due to car density increasing or
decreasing in time, periodic boundary conditions can be
a serious complication. Consider for example an highway
with high car density which empties in time because few
cars enter the road while many more leave it at its end.
This common situation is treated straightforwardly in a
non periodic model, but cannot be dealt with so easily in
the case of periodic boundary conditions where cars leav-
ing the road re-enter it at its beginning; 3) every highway
has a beginning and an end. It is surely a better model
the one which tries to reproduce as closely as possible the
phenomenon which models. There is just one case where
a periodic boundary model with on and off-ramps repro-
duces the correct topology of a road: the ring-shaped roads
which usually surround cites. They are anyway different
from highways because are shorter and with ramps much
closely spaced than in the case of highways.

In the following, the non periodic model which we cre-
ated will be described. We tried to keep it as simple as
possible. This puts into evidence that the majority of the
features of traffic are not due to an hypothetic complex
behaviour of the drivers but to the repeated application of
very simple rules. In spite of its simplicity, the model ex-
hibits most of the experimentally known features of traffic.

2 Highway model

The model simulate a two lane highway with on-ramps
as a long and straight road without traffic lights and
crossroads where cars can in principle run without obsta-
cles. The evolution rules were derived from those used by
Schreckenberg and coworkers [13] and by Nagel and
coworkers [7], which proved to be useful to implement cel-
lular automata simulations of a multilane highway with-
out ramps and using periodic boundary conditions. In this
kind of simulations, cars have an unbound braking ability
in order to avoid car accidents.

Each lane of the highway, whose length can be varied
from simulation to simulation, is divided into cells which
can be either empty or occupied by a car. The road starts
at cell 1, and cars move in the direction of increasing cell
number. The model is asymmetric: one lane, named in

1 Very recently, we become aware of a preprint article by G.
Dietrich, L. Santen, A. Schadschneider, J. Zittark submitted
on the International Journal of Modern Physics. In this article
a single-lane highway with periodic boundary conditions and
ramps is simulated with the use of cellular automata. This
simulation seems to confirm the role of ramps as nucleation
center for jams and other effects, as described later on in this
work.

the following lane 2 or left lane, is used for overtaking
while the other, named lane 1 or right lane, is for nor-
mal cruise. Cars enter the road at its beginning and at
on-ramps. There are no off-ramps except for the highway
end, where cars leave the road. On-ramps are modeled as
a single entrance cell in lane 1. These cells are put from
1 500 to 2 500 cells apart and their number can vary from
simulation to simulation. Typical numbers for on-ramps
are from 4 to 8. For all on-ramps, at each time tick (tt)
the program checks if the cell is empty. If empty, a ran-
dom number in the [0,1] interval is generated and if it is
less than the threshold chosen for that simulation, a car
is generated in that cell with a speed of 2 cell/tt. In some
cases, described below, cars were generated also in lane 2
with the same procedure. At the road beginning, cars are
generated both on lane 1 and lane 2 with the procedure
described above, with starting speed 2 cell/tt. For the sake
of simplicity, cars can have only two values of their maxi-
mum speed; slow cars can be thought of as trucks. In all
simulations presented in this work the percentage of slow
cars created in lane 1 is 0.4 and is 0.15 for those created in
lane 2. However, many simulations were performed with
different values and different ratios for the number of slow
cars in the two lanes without any qualitative differences
in the results. As obviously expected, a greater percentage
of slow cars eases the formation of congested traffic but
do not introduce new phenomena.

The program, at the beginning of each simulation asks
as input parameters highway length, on-ramp number,
starting car density for each lane, car generation probabil-
ity, random deceleration probability, fraction of slow cars,
maximum speed of vehicles (maxv) and simulation length
in time ticks. Calling fgap1, fgap2 and bgap1, bgap2 the
forward and backward gaps (number of empty cells) be-
tween cars for lane 1 and lane 2; v, fv2 and pv1 car speed,
speed of the following car on lane 2 and speed of the pre-
ceding car on lane 1, at each time step the system updates
as follows:

For every car in lane 1

1) compute gaps.
2) if v < maxv: v → v + 1;
3) if v > fgap1 and there is room enough on lane 2:

change lane; else: v = fgap1.

For every car in lane 2
4) compute gaps.
5) If v < maxv: then v → v + 1;
6) if fv2 or pv1 > v: return into lane1 as soon as possi-

ble.

For every car in lane 1 and lane 2
7) v → v − 1 with given probability;
8) compute gaps (to take into account those cars which

changed lane as a result of the previous steps);
9) On lane 1: if v > fgap1: v = fgap1;

10) On lane 2: if v > fgap2: v = fgap2;
11) update car position: if cell is full: cell→ cell + v.

At each time step it is possible to know a number of lo-
cal and average quantities. For each car, position, speed
and gaps are recorded. For each cell are computed mean
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car speed and density, averaging over the 100 cells before
and after the given cell. From these quantities the flow
is readily computed as density by mean speed. The high-
way neither have a constant car density nor a constant car
flow, which is exactly what happens in a real road, where
these quantities usually chance in the time-scale of hours.

In order to compare the results of a simulation with
experimental data it is needed to turn cells into meters,
time ticks into seconds, speed from cell/tt into m/s and
so on for all other quantities. With tt = 1 s and cell
length = 5 m, fast cars with a speed of 9 cell/tt and slow
ones with 6 cell/tt have a speed which corresponds to 162
and 108 km/h. A choice of different values do not change
qualitatively the results of our simulations.

The computer program used for these simulations was
written in Fortran90.

3 Results

The global traffic behaviour can be visualized by several
plots such as: flow versus density, speed versus flow, lane
occupation versus density, speed distribution versus den-
sity. In Figures 1a–1d these plots as obtained in one of
our simulations are shown. A comparison with experimen-
tal data known from literature [7,14,15], shows that our
model is able to reproduce the observed features of traffic.

Among those plots, that of car flow as a function of car
density is called fundamental diagram [16]. Apart from a
small number of scattered points (also present in both ex-
perimental and simulated data [7,14,15]), points ideally
align along a first curve with positive slope at low den-
sities and a second one with negative slope at high den-
sities. This means that at low density, a density increase
also increments flow, while the opposite happens at high
density, where the more car are in, the slower they travel
in the road. In this simulation, data seems to be rather
scattered, but this is only apparent. A population level
contour plot superposed to the same figure, reveals that
most of the flow (about 99% of the points) concentrate
in three regions. The different kinds of flow occurring in
these regions will be examined in the following.

The elongated region on the left of Figure 1a corre-
sponds to free flow [12], which is a condition where fast
cars can easily overtake slow ones, there are large gaps
between cars and traffic flows easily. It is the region of
the fundamental diagram with positive derivative. Free
flow can be generated introducing a low initial density in
the road, a low car creation rate or, finally, eliminating
all the on-ramps. In Figure 2, it is reported the density
ratio distribution for a simulation in which the road is
mostly in free flow conditions. The density ratio distribu-
tion, which informs on the lanes occupation, reveals that
in free flow appears the phenomenon of lane inversion, that
is a greater occupation of the left lane with respect to the
right lane. This effect is due to the presence of a frac-
tion of slow cars in the road, generally moving on lane 1.
As a consequence, fast cars move and stay most of the
time on the left lane in order to overtake. In Figure 3 it is

represented the space-time distribution of lane inversion
areas of a simulation with a car density slowly increasing
in time.

An important result emerging from the simulations is
that in a highway with cars entering the road at its begin-
ning alone and moving without any obstacle except for the
presence of other cars, free flow is the system attractor,
that is the long term flow condition. The explanation for
this fact is simply that a single on-ramp at its beginning
is not enough to fill a highway. Once inside the highway,
cars can accelerate in an empty road and rapidly leave the
entrance area, so that the next cars to enter are free to
accelerate. In these conditions a traffic jam cannot be gen-
erated and heavy traffic cannot be sustained, as reported
in Figure 4. In the case of initial conditions of high den-
sity, a front is created at the road end between free flow
moving cars and congested flow moving cars. The front
propagates backward turning the road to free flow. We do
not have real data to compare with these simulations, but
from our experience as car drivers, we noticed that imme-
diately after the beginning of an highway or after a queue
due to an accident, traffic is fluid and car density is low.

Starting from the origin of the fundamental diagram
and moving towards increasing densities, when the density
is above 0.1 car/cell, local fluctuations can easily grow in
amplitude and the system leaves free flow and usually en-
ters a new phase of traffic, called synchronized flow. This
phase was discovered by Kerner and Rehborn [12] and
named synchronized flow by them. It is defined as a state
of traffic in multilane roads in which the vehicles in differ-
ent lanes move with almost the same speed. This speed is
low with respect to that of cars in free flow (about 1/2),
but higher than that of cars in heavy traffic, where it is
close to zero. In this region flow can be high in spite of
an increasing density, but the linear relationship between
flow and density is lost and the two quantities becomes
totally non-correlated. In the fundamental diagram, syn-
chronized flow is mostly found in the contoured circular
region at the centre of Figure 1a, even if it can also occurs
at higher densities [12].

In Figure 5a, the space-time distribution of the above
mentioned region of synchronized flow of Figure 1a is
shown. The regions evidenced in the plot are those where
cars have a speed v: 2 < v < 5, a speed ratio r between the
two lanes in the range 0.95 < r < 1.05 and flow is between
0.45 and 0.55 car/(tt lane). In the simulation, regions of
synchronized flow fades away in time (traffic turns into
free flow in the left part of the road and congested flow in
the right part) and are clearly triggered by the on-ramps,
which are 7, 2 500 cell apart. This effect of the on-ramps is
common to most dynamic features of traffic as simulated
in our model and will be found again describing the nucle-
ation and propagation of density and flow waves. Figure 5b
shows the space-time distribution of synchronized flow re-
gions obtained from a simulation with similar parameters
but a lower initial density. Car speed, density ratio and
flow are as for Figure 5a. Noteworthy, the synchronized
flow regions seem to propagate both upward and down-
ward in space, as reported for real traffic [12]. This phase
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Fig. 1. (a) Car flow vs. car density. The population contour plot superposed to the data reveals how most points concentrate
in three regions. Two lines are added to evidence free flow (line with positive slope) and congested flow (negative slope). They
must be considered a simple guide for the eye. (b) Car speed vs. flow. In this figure, z axis instead of a contour plot is used to
put into evidence the distribution of points over the bent curve. (c) Ratio between cars in lane 2 and in lane 1 vs. density of
lane 2. At low densities it is often found a greater car occupation in lane 2 than in lane 1. (d) Mean speed vs. density in lane 2.
At very low densities, cars are spread over the speed range between 6 and 9 cell/tt while at higher densities speed decreases as
a function of density.
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Fig. 2. Density ratio distribution between the two lanes.

Fig. 3. Regions of space-time were lane inversion in free flow
is observed
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effect is observed in the first part of the highway alone because,
as a result of cars entering the road at the on-ramps, free flow
disappears moving from left to right in space. In this simula-
tion, the highway has 7 on-ramps 2 000 cell apart. A population
contour plot is superposed to the data to better show the lane
inversion areas.

of traffic occurs, in our simulations, at speeds lower than
the maximum speed of slow cars and is not due to the
presence of 2 kinds of cars.

At higher densities (ρ > 0.3 car/cell) we enter the
congested flow region of the fundamental diagram, see
Figure 1a, where flow is getting lower and lower as the
density increases (negative slope). Traffic jams, that is
regions where cars slow down even to a complete stop
and the density grows nearly to its maximum, easily form.
Jams propagate backward like waves with a simple mecha-
nism: at low speed a car or group of cars may stop; because

Fig. 4. Density vs. space at different times. In a highway with
a starting density of about 0.8 car/cell and with only one on-
ramp at the road entrance, density decreases with time. The
five curves reported in figure refer to density in lane 1 after
1 000 (1), 5 000 (2), 10 000 (3), 15 000 (4), 20 000 (5) time ticks.
Propagation speed is the same as that of backward propagating
waves.

of the finite time required for a stopped car to start mov-
ing again and the closeness of cars in the road, the fol-
lowing cars join the jam, that is are forced to stop, while
cars at the opposite end of the jam start moving, leaving
the jam. In this way, cars join and leave the jam down-
stream, and the region of bundled cars moves upstream.
Figures 6, 7 and 8 show jams produced in our simulations
and propagating at a speed of −(11÷12) km/h, assuming
a cell length of 5 m. The same range of speeds have been
measured in the fundamental plots of Figures 1a and 7c
for the slope of the flow vs. density curve in the congested
flow region. As evidenced by the population contour plot
of Figure 7c, most cars of that simulation travel in con-
gested flow. In such a flow, car distribution is narrower
than that reported in Figure 2 because of the absence of
lane inversion, see Figure 7d.

As stated before, jams form near the on-ramps and af-
terward remain stable in their propagation through all the
on-ramps [18]. In the simulation used to produce Figure 6,
there are 5 on-ramps 2 500 cell apart. The simulation of
Figures 7 and 8 has only 2 on-ramps 10 000 cell apart,
with cars entering the road at both lanes. In practice pa-
rameters are chosen in this simulation so that the second
on-ramp acts as a gateway. A jam produces at the gate-
way and moves backward in space up to the highway be-
ginning. This wave has a non dispersive character, like a
soliton, and this confirms the non linear character of the
flow equations underlining our model. Solitons are special
solutions of the Korteveg-De Vries equation [19] but there
are many other non linear differential equations that ad-
mit single wave solutions that are not solitons. Further
work is in progress to better understand the character of
the waves that we observe in our model.
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Fig. 5. (a) Traffic as a function of space and time. In this plot,
the regions of synchronized flow (2 < speed < 5 cell/tt, speed
ratio r between the two lanes in the range 0.95 < r < 1.05 and
0.45 < flow < 0.55 car/(tt lane)) are reported with population
contour lines added to help visualizing the areas of interest. (b)
Synchronized flow in a simulation with a different number of
on-ramps and slightly lower starting density. There is evidence
of forward and backward propagating waves as well as of steady
states near on-ramps.

Despite the many simulations, performed with differ-
ent parameters, jams always born at the highway on-
ramps. This can be regarded as a proof of the statement
that even if in principle jams can born spontaneously, in
real traffic they are triggered by roadwork, junctions, ac-
cidents, ramps and similar imperfections of the road. The
lack of off-ramps in our model is linked to this. In fact, off-
ramps influence traffic mainly producing a local slowing

Fig. 6. Traffic as a function of space and time. In the plot are
only reported regions where the density of lane 2 was greater
than 0.75 car/cell and the flow was less than 0.2 car/(tt). In
a situation of globally decreasing car density as a function of
time, near the on-ramps at cell 5 000 and 7 500 a jam forms and
subsequently propagates backward in space. This simulation
was 18 000 tt long.

down of car speed which, in heavy traffic, triggers jams.
Another effect is, of course, to decrease the number of cars
in the street. The first effect is already introduced in our
model by the presence of on-ramps, while using different
starting conditions (car generation and car density), our
model is equally able to yield traffic with increasing or
decreasing car density. We were even able to produce con-
ditions were one half of the highway has increasing car
density while the other half has decreasing car density.
Therefore, to keep the model as simple as possible, off-
ramps were avoided.

Jams do not exhaust all the feasible waves in traffic.
There are both upstream and downstream moving waves
in synchronized flow and downstream moving waves in
free flow [12]. Our model was able to produce both kind
of waves, as shown in Figure 5b and Figure 9. The mecha-
nism which gives rise to waves in free flow is different from
that of jams. Now the average car speed is rather high
(> 5 cell/tt) and the overall density low (< 0.2 car/cell).
Considering lane 2, fast cars reach and stuck after slower
cars when for some reason the latter do not give way fast
enough. This creates a moving region denser than the av-
erage in which cars join (reached by faster cars) and leave
(left behind by the faster ones) the wave upstream while
the wave moves downstream.

Apart from reproducing the global features of traffic
and many dynamic structures, the simulations put into
evidence the noisy structure of the variables used to de-
scribe traffic. Speed, density, flow: all of them, when plot-
ted as a function of time (at fixed space) or space (at fixed
time) exhibit a fragmented trend which seems to repeat
at different scales. Work is in progress to check if the con-
cept of fractal is appropriate for these quantities and to
measure their eventual fractal dimension.
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Fig. 7. (a) Traffic as a function of space and time. In the plot is only reported the region where the density of lane 2 is greater
than 0.85 car/cell. In a highway with starting density of 0.65 car/cell in each lane, a traffic jam forms at the on-ramp at cell
10 000 and propagates backward along the highway. (b) The same jam observed as a flow wave. In the plot the region with
flow < 0.15 car/(tt) is reported. (c) Fundamental plot relative to the same simulation. The population contour plot reveals that
most cars are found in the area centered about a density value of 0.7 car/cell. The smaller region above 0.8 car/cell is due to
cars in the jam. (d) Density ratio distribution between the two lanes. In congested flow the two lanes are equally occupied and
the distribution is narrower than that of Figure 2.

4 Conclusions

With the use of this simple cellular automata model of a
highway, we were able to reproduce both global features
of traffic, such as fundamental plot, and dynamic features
of traffic such as the creation and propagation of waves.
In this respect, we would like to emphasize the simula-
tion of forward propagating density waves in free flow (see
Fig. 9) and that of non dispersive waves in congested flow
(see Fig. 7). The speed of the backward propagating waves

in congested flow can be obtained from the slope of the
flow versus density plot (see the line with negative slope
of Fig. 1a).

The other important point of this research is the sim-
ulation of a realistic highway, without periodic boundary
conditions and with a variable number of on-ramps. We
believe that a model with periodic boundary conditions
and ramps could reproduce some effects such as synchro-
nized flow or waves in free flow, which are usually not ob-
served in models with periodic boundary conditions and



166 The European Physical Journal B

Fig. 8. Growth and propagation of the wave described in the
previous figure. From top to bottom density of lane 2 as a
function of space at time 600, 3 000, 11 000 tt.

no ramps, but we are decisely in favor of a non periodic
model because it is closer to real highways and because in
such a model it is straightforward to simulate traffic condi-
tions with a variable number of cars travelling the road. In
other words, in models like the one we used the dynamic
or transient features of traffic are better reproduced, as
demonstrated by the results which we presented in this
article. In particular, we were able to show that car en-
tering the road from on- ramps is required to obtain con-
gested flow and that jam waves always form at ramps and
then propagates along the road. It is interesting to note
that forward propagating waves in free flow seem, on the
contrary, to form spontaneously.
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